meat.Rd
Estimating the variance of the estimating functions of a regression model by cross products of the empirical estimating functions.
meat(x, adjust = FALSE, ...)
a fitted model object.
logical. Should a finite sample adjustment be made? This amounts to multiplication with n/(n−k) where n is the number of observations and k the number of estimated parameters.
arguments passed to the estfun
function.
For some theoretical background along with implementation details see Zeileis (2006).
A k×k matrix corresponding containing the scaled cross products of the empirical estimating functions.
Zeileis A (2006). “Object-Oriented Computation of Sandwich Estimators.” Journal of Statistical Software, 16(9), 1--16. doi:10.18637/jss.v016.i09
Zeileis A, Köll S, Graham N (2020). “Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.” Journal of Statistical Software, 95(1), 1--36. doi:10.18637/jss.v095.i01
x <- sin(1:10)
y <- rnorm(10)
fm <- lm(y ~ x)
meat(fm)
#> (Intercept) x
#> (Intercept) 0.5500547 0.3489064
#> x 0.3489064 0.3073370
meatHC(fm, type = "HC")
#> (Intercept) x
#> (Intercept) 0.5500547 0.3489064
#> x 0.3489064 0.3073370
meatHAC(fm)
#> (Intercept) x
#> (Intercept) 0.5870363 0.4398522
#> x 0.4398522 0.4492865