isoacf.Rd
Autocorrelation function (forced to be decreasing by isotonic regression).
isoacf(x, lagmax = NULL, weave1 = FALSE)
numeric vector.
numeric. The maximal lag of the autocorrelations.
logical. If set to TRUE
isoacf
uses the acf.R
and pava.blocks
function from the
original weave
package, otherwise R's own acf
and
isoreg
functions are used.
isoacf
computes the autocorrelation function (ACF)
of x
enforcing the ACF to be decreasing by isotonic regression.
See also Robertson et al. (1988).
isoacf
returns a numeric vector containing the ACF.
Lumley T & Heagerty P (1999). “Weighted Empirical Adaptive Variance Estimators for Correlated Data Regression.” Journal of the Royal Statistical Society B, 61, 459--477.
Robertson T, Wright FT, Dykstra RL (1988). Order Restricted Statistical Inference. John Wiley and Sons, New York.
set.seed(1)
x <- filter(rnorm(100), 0.9, "recursive")
isoacf(x)
#> [1] 1.00000000 0.75620784 0.52668286 0.31877074 0.17874234 0.10451987
#> [7] 0.07597397 0.07597397 0.07054562 0.03324149 -0.02266489 -0.02266489
#> [13] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489
#> [19] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489
#> [25] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489
#> [31] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489
#> [37] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489
#> [43] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489
#> [49] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489
#> [55] -0.03242424 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610
#> [61] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610
#> [67] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610
#> [73] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610
#> [79] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610
#> [85] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03924011
#> [91] -0.03924011 -0.03924011 -0.03924011 -0.03924011 -0.03924011 -0.03924011
#> [97] -0.03924011 -0.03924011 -0.03924011 -0.03924011
acf(x, plot = FALSE)$acf
#> , , 1
#>
#> [,1]
#> [1,] 1.00000000
#> [2,] 0.75620784
#> [3,] 0.52668286
#> [4,] 0.31877074
#> [5,] 0.17874234
#> [6,] 0.10451987
#> [7,] 0.06774750
#> [8,] 0.08420043
#> [9,] 0.07054562
#> [10,] 0.03324149
#> [11,] -0.02547696
#> [12,] -0.08386780
#> [13,] -0.12702588
#> [14,] -0.15733924
#> [15,] -0.22570274
#> [16,] -0.27858103
#> [17,] -0.32634007
#> [18,] -0.31457877
#> [19,] -0.32132555
#> [20,] -0.32323138
#> [21,] -0.28412580
#>